1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
use std::{
any::Any,
cell::RefCell,
fmt::Debug,
future::Future,
marker::PhantomData,
pin::Pin,
sync::{
mpsc,
mpsc::{Receiver, Sender},
},
vec::IntoIter,
};
use serde::{Deserialize, Serialize};
use thiserror::Error;
use crate::{
coords::WorldTileCoords,
define_label,
environment::{OffscreenKernel, OffscreenKernelConfig},
io::scheduler::Scheduler,
style::Style,
};
define_label!(MessageTag);
impl MessageTag for u32 {
fn dyn_clone(&self) -> Box<dyn MessageTag> {
Box::new(*self)
}
}
#[derive(Error, Debug)]
pub enum MessageError {
#[error("the message did not contain the expected data")]
CastError(Box<dyn Any>),
}
/// The result of the tessellation of a tile. This is sent as a message from a worker to the caller
/// of an [`AsyncProcedure`].
#[derive(Debug)]
pub struct Message {
tag: &'static dyn MessageTag,
transferable: Box<dyn Any + Send>,
}
impl Message {
pub fn new(tag: &'static dyn MessageTag, transferable: Box<dyn Any + Send>) -> Self {
Self { tag, transferable }
}
pub fn into_transferable<T: 'static>(self) -> Box<T> {
self.transferable
.downcast::<T>()
.expect("message has wrong tag")
}
pub fn has_tag(&self, tag: &'static dyn MessageTag) -> bool {
self.tag == tag
}
pub fn tag(&self) -> &'static dyn MessageTag {
self.tag
}
}
pub trait IntoMessage {
fn into(self) -> Message;
}
/// Inputs for an [`AsyncProcedure`]
#[derive(Clone, Serialize, Deserialize)]
pub enum Input {
TileRequest {
coords: WorldTileCoords,
style: Style, // TODO
},
NotYetImplemented, // TODO: Placeholder, should be removed when second input is added
}
#[derive(Error, Debug)]
pub enum SendError {
#[error("could not transmit data")]
Transmission,
}
/// Allows sending messages from workers to back to the caller.
pub trait Context: 'static {
/// Send a message back to the caller.
fn send_back<T: IntoMessage>(&self, message: T) -> Result<(), SendError>;
}
#[derive(Error, Debug)]
pub enum ProcedureError {
/// The [`Input`] is not compatible with the procedure
#[error("provided input is not compatible with procedure")]
IncompatibleInput,
#[error("execution of procedure failed")]
Execution(Box<dyn std::error::Error>),
#[error("sending data failed")]
Send(SendError),
}
#[cfg(feature = "thread-safe-futures")]
pub type AsyncProcedureFuture =
Pin<Box<(dyn Future<Output = Result<(), ProcedureError>> + Send + 'static)>>;
#[cfg(not(feature = "thread-safe-futures"))]
pub type AsyncProcedureFuture =
Pin<Box<(dyn Future<Output = Result<(), ProcedureError>> + 'static)>>;
#[derive(Error, Debug)]
pub enum CallError {
#[error("scheduling work failed")]
Schedule,
#[error("serializing data failed")]
Serialize(Box<dyn std::error::Error>),
#[error("deserializing failed")]
Deserialize(Box<dyn std::error::Error>),
#[error("deserializing input failed")]
DeserializeInput(Box<dyn std::error::Error>),
}
/// Type definitions for asynchronous procedure calls. These functions can be called in an
/// [`AsyncProcedureCall`]. Functions of this type are required to be statically available at
/// compile time. It is explicitly not possible to use closures, as they would require special
/// serialization which is currently not supported.
pub type AsyncProcedure<K, C> = fn(input: Input, context: C, kernel: K) -> AsyncProcedureFuture;
/// APCs define an interface for performing work asynchronously.
/// This work can be implemented through procedures which can be called asynchronously, hence the
/// name AsyncProcedureCall or APC for short.
///
/// APCs serve as an abstraction for doing work on a separate thread, and then getting responses
/// back. An asynchronous procedure call can for example be performed by using message passing. In
/// fact this could theoretically work over a network socket.
///
/// It is possible to schedule work on a remote host by calling [`AsyncProcedureCall::call()`]
/// and getting the results back by calling the non-blocking function
/// [`AsyncProcedureCall::receive()`]. The [`AsyncProcedureCall::receive()`] function returns a
/// struct which implements [`Transferables`].
///
/// ## Transferables
///
/// Based on whether the current platform supports shared-memory or not, the implementation of APCs
/// might want to send the whole data from the worker to the caller back or just pointers to that
/// data. The [`Transferables`] trait allows developers to define that and use different data
/// layouts for different platforms.
///
/// ## Message Passing vs APC
///
/// One might wonder why this is called [`AsyncProcedureCall`] instead of `MessagePassingInterface`.
/// The reason for this is quite simple. We are actually referencing and calling procedures which
/// are defined in different threads, processes or hosts. That means, that an [`AsyncProcedureCall`]
/// is actually distinct from a `MessagePassingInterface`.
///
///
/// ## Current Implementations
///
/// We currently have two implementation for APCs. One uses the Tokio async runtime on native
/// targets in [`SchedulerAsyncProcedureCall`].
/// For the web we implemented an alternative way to call APCs which is called
/// [`PassingAsyncProcedureCall`]. This implementation does not depend on shared-memory compared to
/// [`SchedulerAsyncProcedureCall`]. In fact, on the web we are currently not depending on
/// shared-memory because that feature is hidden behind feature flags in browsers
/// (see [here](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer)).
///
///
// TODO: Rename to AsyncProcedureCaller?
pub trait AsyncProcedureCall<K: OffscreenKernel>: 'static {
type Context: Context + Send + Clone;
type ReceiveIterator<F: FnMut(&Message) -> bool>: Iterator<Item = Message>;
/// Try to receive a message non-blocking.
fn receive<F: FnMut(&Message) -> bool>(&self, filter: F) -> Self::ReceiveIterator<F>;
/// Call an [`AsyncProcedure`] using some [`Input`]. This function is non-blocking and
/// returns immediately.
fn call(
&self,
input: Input,
procedure: AsyncProcedure<K, Self::Context>,
) -> Result<(), CallError>;
}
#[derive(Clone)]
pub struct SchedulerContext {
sender: Sender<Message>,
}
impl Context for SchedulerContext {
fn send_back<T: IntoMessage>(&self, message: T) -> Result<(), SendError> {
self.sender
.send(message.into())
.map_err(|_e| SendError::Transmission)
}
}
// An APC that uses a scheduler to execute work asynchronously.
// An async sender and receiver to exchange return values of calls.
pub struct SchedulerAsyncProcedureCall<K: OffscreenKernel, S: Scheduler> {
channel: (Sender<Message>, Receiver<Message>),
buffer: RefCell<Vec<Message>>,
scheduler: S,
phantom_k: PhantomData<K>,
offscreen_kernel_config: OffscreenKernelConfig,
}
impl<K: OffscreenKernel, S: Scheduler> SchedulerAsyncProcedureCall<K, S> {
pub fn new(scheduler: S, offscreen_kernel_config: OffscreenKernelConfig) -> Self {
Self {
channel: mpsc::channel(),
buffer: RefCell::new(Vec::new()),
phantom_k: PhantomData::default(),
scheduler,
offscreen_kernel_config,
}
}
}
impl<K: OffscreenKernel, S: Scheduler> AsyncProcedureCall<K> for SchedulerAsyncProcedureCall<K, S> {
type Context = SchedulerContext;
type ReceiveIterator<F: FnMut(&Message) -> bool> = IntoIter<Message>;
fn receive<F: FnMut(&Message) -> bool>(&self, mut filter: F) -> Self::ReceiveIterator<F> {
let mut buffer = self.buffer.borrow_mut();
let mut ret = Vec::new();
// FIXME tcs: Verify this!
let mut index = 0usize;
let mut max_len = buffer.len();
while index < max_len {
if filter(&buffer[index]) {
ret.push(buffer.swap_remove(index));
max_len -= 1;
}
index += 1;
}
// TODO: (optimize) Using while instead of if means that we are processing all that is
// TODO: available this might cause frame drops.
while let Ok(message) = self.channel.1.try_recv() {
tracing::debug!("Data reached main thread: {message:?}");
log::debug!("Data reached main thread: {message:?}");
if filter(&message) {
ret.push(message);
} else {
buffer.push(message)
}
}
ret.into_iter()
}
fn call(
&self,
input: Input,
procedure: AsyncProcedure<K, Self::Context>,
) -> Result<(), CallError> {
let sender = self.channel.0.clone();
let offscreen_kernel_config = self.offscreen_kernel_config.clone();
self.scheduler
.schedule(move || async move {
log::info!("Processing on thread: {:?}", std::thread::current().name());
let kernel = K::create(offscreen_kernel_config);
procedure(input, SchedulerContext { sender }, kernel)
.await
.unwrap();
})
.map_err(|_e| CallError::Schedule)
}
}
#[cfg(test)]
pub mod tests {
use crate::io::apc::{Context, IntoMessage, SendError};
pub struct DummyContext;
impl Context for DummyContext {
fn send_back<T: IntoMessage>(&self, _message: T) -> Result<(), SendError> {
Ok(())
}
}
}