1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
use std::{
f64,
ops::{Deref, DerefMut},
};
use cgmath::{prelude::*, *};
use crate::{
coords::{ViewRegion, WorldCoords, Zoom, ZoomLevel},
render::camera::{
Camera, EdgeInsets, InvertedViewProjection, Perspective, ViewProjection, FLIP_Y,
OPENGL_TO_WGPU_MATRIX,
},
util::{
math::{bounds_from_points, Aabb2, Aabb3, Plane},
ChangeObserver,
},
window::{LogicalSize, PhysicalSize},
};
const VIEW_REGION_PADDING: i32 = 1;
const MAX_N_TILES: usize = 512;
pub struct ViewState {
zoom: ChangeObserver<Zoom>,
camera: ChangeObserver<Camera>,
perspective: Perspective,
width: f64,
height: f64,
edge_insets: EdgeInsets,
}
impl ViewState {
pub fn new<F: Into<Rad<f64>>, P: Into<Deg<f64>>>(
window_size: PhysicalSize,
position: WorldCoords,
zoom: Zoom,
pitch: P,
fovy: F,
) -> Self {
let camera = Camera::new((position.x, position.y), Deg(0.0), pitch.into());
let perspective = Perspective::new(fovy);
Self {
zoom: ChangeObserver::new(zoom),
camera: ChangeObserver::new(camera),
perspective,
width: window_size.width() as f64,
height: window_size.height() as f64,
edge_insets: EdgeInsets {
top: 0.0,
bottom: 0.0,
left: 0.0,
right: 0.0,
},
}
}
pub fn set_edge_insets(&mut self, edge_insets: EdgeInsets) {
self.edge_insets = edge_insets;
}
pub fn edge_insets(&self) -> &EdgeInsets {
&self.edge_insets
}
pub fn resize(&mut self, size: LogicalSize) {
self.width = size.width() as f64;
self.height = size.height() as f64;
}
pub fn create_view_region(&self, visible_level: ZoomLevel) -> Option<ViewRegion> {
self.view_region_bounding_box(&self.view_projection().invert())
.map(|bounding_box| {
ViewRegion::new(
bounding_box,
VIEW_REGION_PADDING,
MAX_N_TILES,
*self.zoom,
visible_level,
)
})
}
pub fn get_intersection_time(
ray_origin: Vector3<f64>,
ray_direction: Vector3<f64>,
plane_origin: Vector3<f64>,
plane_normal: Vector3<f64>,
) -> f64 {
let m = plane_origin - ray_origin;
let distance = (m).dot(plane_normal);
let approach_speed = ray_direction.dot(plane_normal);
// Returns an infinity if the ray is
// parallel to the plane and never intersects,
// or NaN if the ray is in the plane
// and intersects everywhere.
return distance / approach_speed;
// Otherwise returns t such that
// ray_origin + t * rayDirection
// is in the plane, to within rounding error.
}
pub fn furthest_distance(&self, camera_height: f64, center_offset: Point2<f64>) -> f64 {
let perspective = &self.perspective;
let width = self.width;
let height = self.height;
let camera = self.camera.position();
let y = perspective.y_tan();
let x = perspective.x_tan(width, height);
let offset_x = perspective.offset_x(center_offset, width);
let offset_y = perspective.offset_y(center_offset, height);
let rotation = Matrix4::from_angle_x(self.camera.get_pitch())
* Matrix4::from_angle_y(self.camera.get_yaw())
* Matrix4::from_angle_z(self.camera.get_roll());
let rays = [
Vector3::new(x * (1.0 - offset_x), y * (1.0 - offset_y), 1.0),
Vector3::new(x * (-1.0 - offset_x), y * (1.0 - offset_y), 1.0),
Vector3::new(x * (1.0 - offset_x), y * (-1.0 - offset_y), 1.0),
Vector3::new(x * (-1.0 - offset_x), y * (-1.0 - offset_y), 1.0),
];
let ray_origin = Vector3::new(-camera.x, -camera.y, -camera_height);
let plane_origin = Vector3::new(-camera.x, -camera.y, 0.0);
let plane_normal = (rotation * Vector4::new(0.0, 0.0, 1.0, 1.0)).truncate();
rays.iter()
.map(|ray| Self::get_intersection_time(ray_origin, *ray, plane_origin, plane_normal))
.fold(0. / 0., f64::max)
}
pub fn camera_to_center_distance(&self) -> f64 {
let height = self.height;
let fovy = self.perspective.fovy();
let half_fovy = fovy / 2.0;
// Camera height, such that given a certain field-of-view, exactly height/2 are visible on ground.
let camera_to_center_distance = (height / 2.0) / (half_fovy.tan()); // TODO: Not sure why it is height here and not width
camera_to_center_distance
}
/// This function matches how maplibre-gl-js implements perspective and cameras at the time
/// of the mapbox -> maplibre fork: [src/geo/transform.ts#L680](https://github.com/maplibre/maplibre-gl-js/blob/e78ad7944ef768e67416daa4af86b0464bd0f617/src/geo/transform.ts#L680)
#[tracing::instrument(skip_all)]
pub fn view_projection(&self) -> ViewProjection {
let width = self.width;
let height = self.height;
let center = self.edge_insets.center(width, height);
// Offset between wanted center and usual/normal center
let center_offset = center - Vector2::new(width, height) / 2.0;
let camera_to_center_distance = self.camera_to_center_distance();
let camera_matrix = self.camera.calc_matrix(camera_to_center_distance);
// Add a bit extra to avoid precision problems when a fragment's distance is exactly `furthest_distance`
let far_z = self.furthest_distance(camera_to_center_distance, center_offset) * 1.01;
// The larger the value of near_z is
// - the more depth precision is available for features (good)
// - clipping starts appearing sooner when the camera is close to 3d features (bad)
//
// Smaller values worked well for mapbox-gl-js but deckgl was encountering precision issues
// when rendering it's layers using custom layers. This value was experimentally chosen and
// seems to solve z-fighting issues in deckgl while not clipping buildings too close to the camera.
//
// TODO remove: In tile.vertex.wgsl we are setting each layer's final `z` in ndc space to `z_index`.
// This means that regardless of the `znear` value all layers will be rendered as part
// of the near plane.
// These values have been selected experimentally:
// https://www.sjbaker.org/steve/omniv/love_your_z_buffer.html
let near_z = height / 50.0;
let mut perspective =
self.perspective
.calc_matrix_with_center(width, height, near_z, far_z, center_offset);
//let mut perspective = self.perspective.calc_matrix(width / height, near_z, far_z);
// Apply center of perspective offset, in order to move the vanishing point
//perspective.z[0] = -center_offset.x * 2.0 / width;
//perspective.z[1] = center_offset.y * 2.0 / height;
// Apply camera and move camera away from ground
let view_projection = perspective * camera_matrix;
// TODO for the below TODOs, check GitHub blame to get an idea of what these matrices are used for!
// TODO mercatorMatrix https://github.com/maplibre/maplibre-gl-js/blob/e78ad7944ef768e67416daa4af86b0464bd0f617/src/geo/transform.ts#L725-L727
// TODO scale vertically to meters per pixel (inverse of ground resolution): https://github.com/maplibre/maplibre-gl-js/blob/e78ad7944ef768e67416daa4af86b0464bd0f617/src/geo/transform.ts#L729-L730
// TODO alignedProjMatrix https://github.com/maplibre/maplibre-gl-js/blob/e78ad7944ef768e67416daa4af86b0464bd0f617/src/geo/transform.ts#L735-L747
// TODO labelPlaneMatrix https://github.com/maplibre/maplibre-gl-js/blob/e78ad7944ef768e67416daa4af86b0464bd0f617/src/geo/transform.ts#L749-L752C14
// TODO glCoordMatrix https://github.com/maplibre/maplibre-gl-js/blob/e78ad7944ef768e67416daa4af86b0464bd0f617/src/geo/transform.ts#L754-L758
// TODO pixelMatrix, pixelMatrixInverse https://github.com/maplibre/maplibre-gl-js/blob/e78ad7944ef768e67416daa4af86b0464bd0f617/src/geo/transform.ts#L760-L761
ViewProjection(FLIP_Y * OPENGL_TO_WGPU_MATRIX * view_projection)
}
pub fn zoom(&self) -> Zoom {
*self.zoom
}
pub fn did_zoom_change(&self) -> bool {
self.zoom.did_change(0.05)
}
pub fn update_zoom(&mut self, new_zoom: Zoom) {
*self.zoom = new_zoom;
log::info!("zoom: {new_zoom}");
}
pub fn camera(&self) -> &Camera {
self.camera.deref()
}
pub fn camera_mut(&mut self) -> &mut Camera {
self.camera.deref_mut()
}
pub fn did_camera_change(&self) -> bool {
self.camera.did_change(0.05)
}
pub fn update_references(&mut self) {
self.camera.update_reference();
self.zoom.update_reference();
}
/// A transform which can be used to transform between clip and window space.
/// Adopted from [here](https://docs.microsoft.com/en-us/windows/win32/direct3d9/viewports-and-clipping#viewport-rectangle) (Direct3D).
fn clip_to_window_transform(&self) -> Matrix4<f64> {
let min_depth = 0.0;
let max_depth = 1.0;
let x = 0.0;
let y = 0.0;
let ox = x + self.width / 2.0;
let oy = y + self.height / 2.0;
let oz = min_depth;
let pz = max_depth - min_depth;
Matrix4::from_cols(
Vector4::new(self.width / 2.0, 0.0, 0.0, 0.0),
Vector4::new(0.0, -self.height / 2.0, 0.0, 0.0),
Vector4::new(0.0, 0.0, pz, 0.0),
Vector4::new(ox, oy, oz, 1.0),
)
}
/// Transforms coordinates in clip space to window coordinates.
///
/// Adopted from [here](https://docs.microsoft.com/en-us/windows/win32/dxtecharts/the-direct3d-transformation-pipeline) (Direct3D).
fn clip_to_window(&self, clip: &Vector4<f64>) -> Vector4<f64> {
#[rustfmt::skip]
let ndc = Vector4::new(
clip.x / clip.w,
clip.y / clip.w,
clip.z / clip.w,
1.0
);
self.clip_to_window_transform() * ndc
}
/// Alternative implementation to `clip_to_window`. Transforms coordinates in clip space to
/// window coordinates.
///
/// Adopted from [here](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VkViewport.html)
/// and [here](https://matthewwellings.com/blog/the-new-vulkan-coordinate-system/) (Vulkan).
fn clip_to_window_vulkan(&self, clip: &Vector4<f64>) -> Vector3<f64> {
#[rustfmt::skip]
let ndc = Vector4::new(
clip.x / clip.w,
clip.y / clip.w,
clip.z / clip.w,
1.0
);
let min_depth = 0.0;
let max_depth = 1.0;
let x = 0.0;
let y = 0.0;
let ox = x + self.width / 2.0;
let oy = y + self.height / 2.0;
let oz = min_depth;
let px = self.width;
let py = self.height;
let pz = max_depth - min_depth;
let xd = ndc.x;
let yd = ndc.y;
let zd = ndc.z;
Vector3::new(px / 2.0 * xd + ox, py / 2.0 * yd + oy, pz * zd + oz)
}
/// Order of transformations reversed: https://computergraphics.stackexchange.com/questions/6087/screen-space-coordinates-to-eye-space-conversion/6093
/// `w` is lost.
///
/// OpenGL explanation: https://www.khronos.org/opengl/wiki/Compute_eye_space_from_window_space#From_window_to_ndc
fn window_to_world(
&self,
window: &Vector3<f64>,
inverted_view_proj: &InvertedViewProjection,
) -> Vector3<f64> {
#[rustfmt::skip]
let fixed_window = Vector4::new(
window.x,
window.y,
window.z,
1.0
);
let ndc = self.clip_to_window_transform().invert().unwrap() * fixed_window;
let unprojected = inverted_view_proj.project(ndc);
Vector3::new(
unprojected.x / unprojected.w,
unprojected.y / unprojected.w,
unprojected.z / unprojected.w,
)
}
/// Alternative implementation to `window_to_world`
///
/// Adopted from [here](https://docs.rs/nalgebra-glm/latest/src/nalgebra_glm/ext/matrix_projection.rs.html#164-181).
fn window_to_world_nalgebra(
window: &Vector3<f64>,
inverted_view_proj: &InvertedViewProjection,
width: f64,
height: f64,
) -> Vector3<f64> {
let pt = Vector4::new(
2.0 * (window.x - 0.0) / width - 1.0,
2.0 * (height - window.y - 0.0) / height - 1.0,
window.z,
1.0,
);
let unprojected = inverted_view_proj.project(pt);
Vector3::new(
unprojected.x / unprojected.w,
unprojected.y / unprojected.w,
unprojected.z / unprojected.w,
)
}
/// Gets the world coordinates for the specified `window` coordinates on the `z=0` plane.
pub fn window_to_world_at_ground(
&self,
window: &Vector2<f64>,
inverted_view_proj: &InvertedViewProjection,
bound: bool,
) -> Option<Vector2<f64>> {
let near_world =
self.window_to_world(&Vector3::new(window.x, window.y, 0.0), inverted_view_proj);
let far_world =
self.window_to_world(&Vector3::new(window.x, window.y, 1.0), inverted_view_proj);
// for z = 0 in world coordinates
// Idea comes from: https://dondi.lmu.build/share/cg/unproject-explained.pdf
let u = -near_world.z / (far_world.z - near_world.z);
if !bound || (0.0..=1.01).contains(&u) {
let result = near_world + u * (far_world - near_world);
Some(Vector2::new(result.x, result.y))
} else {
None
}
}
/// Calculates an [`Aabb2`] bounding box which contains at least the visible area on the `z=0`
/// plane. One can think of it as being the bounding box of the geometry which forms the
/// intersection between the viewing frustum and the `z=0` plane.
///
/// This implementation works in the world 3D space. It casts rays from the corners of the
/// window to calculate intersections points with the `z=0` plane. Then a bounding box is
/// calculated.
///
/// *Note:* It is possible that no such bounding box exists. This is the case if the `z=0` plane
/// is not in view.
pub fn view_region_bounding_box(
&self,
inverted_view_proj: &InvertedViewProjection,
) -> Option<Aabb2<f64>> {
let screen_bounding_box = [
Vector2::new(0.0, 0.0),
Vector2::new(self.width, 0.0),
Vector2::new(self.width, self.height),
Vector2::new(0.0, self.height),
]
.map(|point| self.window_to_world_at_ground(&point, inverted_view_proj, false));
let (min, max) = bounds_from_points(
screen_bounding_box
.into_iter()
.flatten()
.map(|point| [point.x, point.y]),
)?;
Some(Aabb2::new(Point2::from(min), Point2::from(max)))
}
/// An alternative implementation for `view_bounding_box`.
///
/// This implementation works in the NDC space. We are creating a plane in the world 3D space.
/// Then we are transforming it to the NDC space. In NDC space it is easy to calculate
/// the intersection points between an Aabb3 and a plane. The resulting Aabb2 is returned.
pub fn view_region_bounding_box_ndc(&self) -> Option<Aabb2<f64>> {
let view_proj = self.view_projection();
let a = view_proj.project(Vector4::new(0.0, 0.0, 0.0, 1.0));
let b = view_proj.project(Vector4::new(1.0, 0.0, 0.0, 1.0));
let c = view_proj.project(Vector4::new(1.0, 1.0, 0.0, 1.0));
let a_ndc = self.clip_to_window(&a).truncate();
let b_ndc = self.clip_to_window(&b).truncate();
let c_ndc = self.clip_to_window(&c).truncate();
let to_ndc = Vector3::new(1.0 / self.width, 1.0 / self.height, 1.0);
let plane: Plane<f64> = Plane::from_points(
Point3::from_vec(a_ndc.mul_element_wise(to_ndc)),
Point3::from_vec(b_ndc.mul_element_wise(to_ndc)),
Point3::from_vec(c_ndc.mul_element_wise(to_ndc)),
)?;
let points = plane.intersection_points_aabb3(&Aabb3::new(
Point3::new(0.0, 0.0, 0.0),
Point3::new(1.0, 1.0, 1.0),
));
let inverted_view_proj = view_proj.invert();
let from_ndc = Vector3::new(self.width, self.height, 1.0);
let vec = points
.iter()
.map(|point| {
self.window_to_world(&point.mul_element_wise(from_ndc), &inverted_view_proj)
})
.collect::<Vec<_>>();
let min_x = vec
.iter()
.map(|point| point.x)
.min_by(|a, b| a.partial_cmp(b).unwrap())?;
let min_y = vec
.iter()
.map(|point| point.y)
.min_by(|a, b| a.partial_cmp(b).unwrap())?;
let max_x = vec
.iter()
.map(|point| point.x)
.max_by(|a, b| a.partial_cmp(b).unwrap())?;
let max_y = vec
.iter()
.map(|point| point.y)
.max_by(|a, b| a.partial_cmp(b).unwrap())?;
Some(Aabb2::new(
Point2::new(min_x, min_y),
Point2::new(max_x, max_y),
))
}
}
#[cfg(test)]
mod tests {
use cgmath::{Deg, Matrix4, Vector2, Vector4};
use crate::{
coords::{WorldCoords, Zoom},
render::view_state::ViewState,
window::PhysicalSize,
};
#[test]
fn conform_transformation() {
let fov = Deg(60.0);
let mut state = ViewState::new(
PhysicalSize::new(800, 600).unwrap(),
WorldCoords::at_ground(0.0, 0.0),
Zoom::new(10.0),
Deg(0.0),
fov,
);
//state.furthest_distance(state.camera_to_center_distance(), Point2::new(0.0, 0.0));
let projection = state.view_projection().invert();
let bottom_left = state
.window_to_world_at_ground(&Vector2::new(0.0, 0.0), &projection, true)
.unwrap();
println!("bottom left on ground {:?}", bottom_left);
let top_right = state
.window_to_world_at_ground(&Vector2::new(state.width, state.height), &projection, true)
.unwrap();
println!("top right on ground {:?}", top_right);
let mut rotated = Matrix4::from_angle_x(Deg(-30.0))
* Vector4::new(bottom_left.x, bottom_left.y, 0.0, 0.0);
println!("bottom left rotated around x axis {:?}", rotated);
rotated = Matrix4::from_angle_y(Deg(-30.0)) * rotated;
println!("bottom left rotated around x and y axis {:?}", rotated);
state.camera.set_pitch(Deg(30.0));
//state.camera.set_yaw(Deg(-30.0));
// TODO: verify far distance plane calculation
}
}